myGully.com

myGully.com (https://mygully.com/index.php)
-   Schule, Studium, Ausbildung & Beruf (https://mygully.com/forumdisplay.php?f=400)
-   -   benötige Hilfe bei Extremwert Aufgabe (https://mygully.com/showthread.php?t=3023693)

thekingofmusic 05.09.13 19:18

benötige Hilfe bei Extremwert Aufgabe
 
he Leute

hab hier ne Extremwertaufgabe bei der ich nicht weiterkomme...

Wie soll man bei so ner Aufgabe am besten vorgehen ?

Aufgabe:

Ein Kugelsektor hat ein Volumen von 1 dm^3. Bei welchem Radius r (r < 1.5dm) und bei welcher Segmenthöhe h wird die Oberfläche des Kugelsektors extremal ?

Gruss und Danke :)

eitch100 06.09.13 12:37

Hi...
also ich bin zwar kein Spezialist für so etwas, aber wenn ich davon ausgehe, dass die Oberfläche eines Kugelsektors bei konstantem Volumen am Größten ist, wenn h am Größten ist und h maximal r sein kann (das wäre dann quasi eine Halbkugel), ergibt sich entsprechend der Formeln für das Volumen und die Oberfläche, dass sich die maximale Oberfläche bei h=0,78159 dm (also A=5,7576 dm³) ergibt...

r=1,5
h=0,2122
A=5,6244

r=1
h=0,47746
A=5,6785

r=0,78159
h=0,78159
A=5,7574

Sollte eine Halbkugel nicht als Kugelsektor durchgehen, ist h natürlich unendlich gegen 0,78159...

renegade666 06.09.13 14:14

Wenn du wirklich fachkundige Hilfe suchst, findst du sie hier:
[Link nur für registrierte und freigeschaltete Mitglieder sichtbar. Jetzt registrieren...]
Was du da aber nicht bekommen wirst, ist eine reine Lösung. Die Jungs und Mädels helfen dir, die Aufgaben zu lösen.

Hab da während des Studiums einiges an Zeit verbracht :T

eitch100 06.09.13 14:24

Zitat:

Zitat von renegade666 (Beitrag 24851529)
Wenn du wirklich fachkundige Hilfe suchst, findst du sie hier:
[Link nur für registrierte und freigeschaltete Mitglieder sichtbar. Jetzt registrieren...]

Genau dort wurde exakt diese Aufgabe auch schon mal gestellt, allerdings hatte derjenige nur die entsprechenden Formeln gesucht...:D
Ich finde meine Lösung trotzdem überzeugend...:p


Alle Zeitangaben in WEZ +1. Es ist jetzt 22:29 Uhr.

Powered by vBulletin® (Deutsch)
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.